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A Landscape of Time Asymmetry 
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This is a conceptual overview on a polemical subject: the problem of time 
asymmetry. It is proved that time asymmetry can be considered as a global 
generalized symmetry breaking, produced by a choice of a physically admissible 
state space, in a global Gel'land triplet. The well-known physics of irreversible 
process can be studied using this mathematical structure and all the arrows of 
time can be explained and coordinated. But the deeper problems of time definition 
and time arrow in quantum gravity remain outside of this landscape. 

1. I N T R O D U C T I O N  

If we ignore the t ime-asymmet r ic  weak interaction [as is usual in this 

kind o f  research (Sachs, 1987), since the weak interaction is so weak  that it 
is diff icult  to see how it can explain  the macroscopic  t ime asymmet ry] ,  the 
t ime-asymmet ry  problem can be stated in the fol lowing question: 

How can we explain the obvious time asymmetry of  the universe and 
most o f  its subsystems if  the fundamental laws o f  physics are time-symmetric? 

There  are only two causes  for a symmet ry  in nature: ei ther  the laws o f  
nature are asymmetr ic  or  the solutions of  the equations o f  the theory are 

asymmetr ic .  As  t ime asymmet ry  is not an except ion,  the answer  is contained 
in the question itself: If  the laws o f  nature are t ime-symmetr ic ,  essent ia l ly  

the only way we have to explain  the t ime asymmet ry  o f  the universe is to 

postulate that the space of  solut ions is not t ime-symmetr ic ,  namely  to use 

the second cause o f  asymmetry .  
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Let us rephrase this analysis using a mathematical language: Mathemati- 
cians say that a function is defined by two conditions: 

f(x) =y, f :  D ~ R  

namely we must know not only the function itself, but also its domain of 
definition and its range. Physicists usually use only the first condition and 
consider the second one as a mathematical sophistication. The problem 
appears when physicists try to solve global problems, which are related to 
the two conditions, as local problems, i.e., using the first one only. For 
example, the question "is the function f(x) = y = x 2 is an even or an odd 
function?" cannot be answered. In fact this function is even only if f :  R --, 
R+, but the question has no meaning if f :  R+ --, R§ 

Analogously, if we consider the locally time-symmetric Liouville 
equation 

dp 
i - ~  = Lp 

where p is a distribution function or a density matrix and L the Liouville 
operator, and we ask ourselves if the time evolutions defined by this equation 
are time-symmetric or time-asymmetric, the question has no meaning. "lb 
give an answer we must define the space where the p lives. The time evolution 
will be symmetric if p e ~ ,  the usual Liouville space. The evolution will 
be time-asymmetric if p e ~ _  C ,~, namely if we restrict the p to a subspace 
of asymmetric solutions. Mathematical sophistication is usually superfluous, 
but sometime, it is essential. 

This will be the guideline or recipe of our research. 
Going back to the initial question in more detail, we must also observe 

that if the initial state of  the universe (or one of its subsystems) were an 
equilibrium state, the universe (or the subsystem) would remain forever in 
this equilibrium state, making it impossible to find any time asymmetry. Then 
we must solve three problems: 

A. To explain why the universe (or the subsystem) began in a nonequilib- 
rium (unstable, low-entropy) state at a time that we will call t = 0. 

B. To define, for the period t > 0, some Lyapunov variable, namely a 
variable that never decreases (e.g., entropy) and defines an arrow of time 
(and also to find irreversible evolution equations, i.e., master equations), in 
spite of the fact that the main laws of physics are time-symmetric. To solve 
this problem we can use our recipe. 

C. In different areas of physics we find different time asymmetries, 
namely several arrows of  time (listed as they appear in the text): 
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�9 The thermodynamic arrow o f  time (TAT): the direction of the increase 
of entropy. 

�9 The quantum arrow o f  time (QAT): the arrow defined by the collapse 
of the wave function, i.e., the time direction that goes from preparation 
to measurement (Bohm, 1995; Bohm et al., n.d.; Antoniou et al., 
1995). 

�9 The global arrow o f  time (GAT): the direction of the future semicones 
of the oriented time manifold that we usually take as the model of 
our universe (Lichnerowicz, 1964). 

�9 The electromagnetic arrow o f  time (EMAT): the choice of retarded 
solutions instead of advanced solutions, which means to choose the 
past semicones for the propagation of the solutions and therefore 
essentially GAT = EMAT. 

�9 The psychological arrow o f  time (PAT): our feeling that past is sub- 
stantially different than the future. 

�9 The cosmological arrow o f  time (CAT): the direction of the increasing 
of the radius of the universe. 

Choosing a convenient cosmological model, we must demonstrate that 
all these arrows point to the same direction. 

In the following sections we will comment and find schematic solutions 
(using the minimum number of mathematical equations and referring to the 
literature as much as possible) for these three problems. In other words, we 
will coordinate the solutions found by other authors and ourselves in order 
to present an overview on the present state of the time-asymmetry problem. 

But this landscape is unfinished for two main reasons: 

We try neither to define time nor to find its real nature, as in Castag- 
nino (1989), Castagnino and Mazzitelli (1989, 1990), Castagnino and 
Lombardo (1993), and Barbour (1994). 
We only use usual physics. We neither attempt to define the entropy 
of the gravitational field nor use quantum gravity, essentially because 
we think that these are quite unfinished and poorly understood area 
of physics that may obscure all our landscape [nevertheless see Cas- 
tagnino et al. (1995a, 1996) and Castagnino (1996)]. 

But, of course, we must solve these problems to have a full comprehen- 
sion of the subject. 

2. THE BRANCH A R R O W  OF TIME 

Let us begin with problem (A): The set of irreversible processes within 
the universe, each one beginning in an unstable nonequilibrium state, can be 
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Fig. 1. The classical image of a branch system. 

considered a branch system (Reichenbach, 1956: Davies, 1994). Namely, 
every one of these processes began in a nonequilibrium state such that this 
state was produced by a previous process of the set. For example, the Gibbs 
ink drop (initial unstable state) spreading in a glass of water (irreversible 
process) is only probable (since the probability to create an ink drop by 
fluctuations is extremely small) if there was first an ink factory, which 
extracted the necessary energy from an oven, where coal (initial unstable 
state) was burned (branched irreversible process); in turn, coal was created 
with energy coming from the sun, where H (initial unstable state) is burned 
(branched irreversible process); finally H was created using energy obtained 
from the unstable initial state of  the universe (the absolute initial state of the 
branch system). This branch system is symbolized in fig. 1. Therefore, using 
this hierarchical chain, all the irreversible processes are related to the cosmo- 
logical initial condition, the only one that must be explained. We will give 
a quantum diagram for a branch system in Section 4 and we will try to solve 
the problem of the initial low-entropy-unstable initial condition in Section 
6. For the moment let us observe that the branch system defines its own 
arrow of time, the branch arrow of time (BAT), as the direction that goes 
from the unstable initial state of every member  of  the system toward equilib- 
rium. We will see that BAT is the master arrow of time that allows us to 
relate and coordinate all others. 

3. DYNAM IC S  VS. T H E R M O D Y N A M I C S  

Problem (B) can also be considered as the search for a unified formalism 
of dynamics (namely all areas of physics with reversible equations) with 
thermodynamics (where the increasing of entropy, in irreversible processes, 
defines the TAT). The idea is to somehow modify the time-symmetric structure 
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of the theory in such a way that it allow us to define Lyapunov variables 
(namely, variables that always increase with time). 

But once we have understood the origin of the initial unstable state of 
each irreversible process within the universe (even if we have not yet 
explained the origin of the initial state of the whole universe), it is not difficult 
to obtain Lyapunov variables (or irreversible evolution equations), if we 
consider, e.g., that the subsystems where these processes take place are not 
isolated. If it is so, forces of a stochastic nature penetrate from the exterior 
of each subsystem and, as is well known, if we add stochastic terms to a 
time-symmetric evolution equation, we obtain time-asymmetric ones, yielding 
Lyapunov variables, e.g., a nondecreasing entropy (Mackey, 1989, 1992; 
Lasota and Mackey, 1985). We can as well consider that each subsystem has 
an enormous amount of information and we are able to measure, compute, 
and control only a part of this information, which we will call relevant. If 
we neglect the rest of the information, the irrelevant part, we can also obtain 
irreversible evolution equations and Lyapunov variables (Mackey, 1989, 1992; 
Lasota and Mackey, 1985; Zwanzig, 1960, 1966; Zurek, t991; Courbage and 
Nicolis, 1990). We will call these methods the coarse-graining or usual 
formalism. If we would like to use more refined mathematical tools, we can 
substitute the stochastic perturbations by a rigging of the space of states 
(Bohm, 1986; Bohm et al., 1989; Bohm and Gadella, 1989; Antoniou and 
Prigogine, 1993) obtaining what we will call the restricted dynamics formal- 
ism 3 [but we believe that all these formalisms are essentially physically 
equivalent, as we shall see (Ordofiez, 1995)]. Perhaps the last method is the 
best one to deal with cosmological problems, because it is specially designed 
for closed systems (Castagnino et al., 1993a, b; Castagnino and Laura, 1994). 
Also, using this last method, we can see that time asymmetry is a global 
symmetry breaking. 

Let us see how both formalisms can be derived from the same theory 
in the classical case: In fact, it is reasonable to think that thermodynamic 
laws could be demonstrated using the classical or quantum dynamical laws. 
But it seems that this is not the case for the second law of thermodynamics, 
which says that entropy increases in irreversible evolution, leading the system 
to a state of thermodynamic equilibrium or maximal entropy. This problem 
can be made precise as follows: 

(i) The Liouville equation is the time-symmetric evolution equation for 
classical distribution functions (or quantum density matrices) p belonging to 

3We shall call restricted dynamics the formalism developed in Bohm (1986), Bohm et al. 
(1989), Bohm and Gadella (1989), and Antoniou and Prigogine (1993), reinterpreted in the 
way presented in this paper. 
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Liouville space, ~ i.e., 

dp 
i 57 = L~, (1) 

where L is the Liouville operator. 
(ii) Any systems beginning in a unstable state reach a final equilibrium 

stationary state P,  (an observational fact). This is a time-asymmetric process 
that cannot be described by the Liouville equation, since a system that follows 
this equation never spontaneously reaches the equilibrium state. 

(iii) This equation also prevents the definition of any function or func- 
tional of p: F(p) (only constructed with P and mathematical elements of the 
Liouville or phase spaces) such that F(9) > 0. Namely, it is impossible, as 
a consequence of the Liouville theorem, to define a Lyapunov variable, i.e., 
a time-growing functional of P, like thermodynamic entropy [e.g., the volume 
of the support of a characteristic distribution function p is time constant, 
Gibbs and conditional entropies are time constants (Mackey, 1989, 1992; 
Lasota and Mackey, 1985), etc.]. 

(iv) Thus entropy is the essential missing ingredient to unify dynamics 
with thermodynamics (theoretical problem). What we actually want is to 
somehow derive, from the Liouville equation, a time-asymmetric evolution 
that leads the system to a thermodynamic equilibrium, with a maximal entropy 
stationary state p, .  

Therefore we have an observational problem, i.e., to combine the Liou- 
viUe theorem with the obvious fact that usual physical systems have a tendency 
to go to a thermodynamic equilibrium, and a theoretical one, to find a 
unified formalism for dynamics and thermodynamics. The solution of the 
first problem is based in a theorem by Lasota and Mackey (1985): In fact, 
let p(x), ~(x) . . . .  be the densities or distribution functions, functions of x E 
F (the phase space)4; let us define an inner product (pl~) = f p*(x)o'(x), and 
let ~ be the Hilbert (Liouville) space corresponding to this product, etc. As 
x evolves as x(t) = S(t)x(O), p evolves as p(t) = P(t)p(0) [where P(t) is the 
Frobenius-Perron operator associated with the evolution S(t)]. Then; 

Theorem Let S(t) be an ergodic transformation with stationary equilib- 
rium density p ,  [for the associated Frobenius-Perron operator P(t) in a phase 
space of finite p,-measure]. Then S(t) is p,-mixing if and only if P(t)p is 
weakly convergent to p, ,  i.e., 

lim (P(t)plg) = (p,lg) (2) 

for all bounded measurable functions g. 

4The space of the p is the Gibbs ensemble F; we can use as well the Boltzmann ensemble 
(Mackey, 1989. 1992; Lasota and Mackey, 1985). 
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That is, if the time evolution in phase space S(t), is mixing and if there 
is a stationary equilibrium density p, ,  namely such that P(t)p,  = p, ,  then 
(2) can be proved. 

But 

lim P(t)p ~ p,  (3) 
,__,• 

Furthermore, in many cases this limit does not even exist. In fact, think again 
of a typical mixing system: the ink drop. It evolves maintaining its volume, 
but it changes its shape in such away that filaments grow from the drop and 
fill all the glass in a homogeneous way; this is a typical example of mixing 
evolution. But, as the filaments grow they become longer and thinner. In the 
limit t --* oc they will be infinitely long and they will have a vanishing 
width. This final figure is not the support of any regular, square-integrable, 
distribution function of ,~. Therefore we have a weak limit, but we do not 
have a strong limit [i.e., we do not have a limit in the norm Ilpll = (pip) 
(Mackey, 1989, 1992; Lasota and Mackey, t985)]. Precisely, the r.h.s, of  (2) 
symbolizes just a functional over g where p ,  is not an ordinary density. 

Nevertheless we never see or measure p. What we see and measure are 
mean values of physical quantities O such that 

(O)p = (plO) (4) 

Thus what we actually see is that 

lim (O)p = (O)p. (5) 
I.--9oo 

In fact, all the mean values of the physical quantities go to their equilibrium 
mean values if the evolution of the system is p,-mixing. So the solution of 
the problem is quite easy: 

(i) The Liouville theorem is embodied in (3): the system does not go 
(strongly) toward the equilibrium states. 

(ii) The tendency toward equilibrium is embodied in (5): the mean values 
of all the physical quantities go to their equilibrium values. 

Clearly these facts are not contradictory. We will call this solution the 
nongraining solution. 

As chaotic-mixing systems are very frequent in the universe (and there- 
fore the universe partially behaves as a mixing system), the problem is 
essentially solved. Observe that the limit in (2) is the same for t ~ +-~; 
therefore there is not a time-symmetry breaking if p ~ ~ .  But, the symmetry 
breaking is produced if we consider that our (sub)systems belong to a branch 
system and therefore we cannot consider the time t < 0. 
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What is left to be studied is item (iv), namely the different techniques to 
deal with the detailed calculations using a unified dynamical-thermodynamic 
formalism. These techniques try to find some logical modification of the 
theory in order to find the missing limit (3), which, even if unnecessary from 
the mathematical point of view, is the way physicists used to think (or loved 
to think), at least up to now. Also, the strong limit is necessary in order to 
find, in an easy way, the right thermodynamic behavior for some definitions 
of entropy (Mackey, 1989, 1992; Lasota and Mackey, 1985). In fact there 
are two techniques, as follows: 

3.1. Coarse-Graining 

Let us define an arbitrary, but time-independent, projector 

P = Ig)(g[ . . . . .  (gig) = 1 (6) 

and let us define a coarse-graining density function as 

15 = Pp = Ig)(glp) (7) 

Since complex physical systems usually have a great number of dynamical 
variables (these variables define the microscopic state of the system), and 
we just measure, see, or control a small number of them (the ones that define 
the macroscopic state of the system), we will say that the later information 
is relevant, while the former is irrelevant,  so it can be neglected. We consider 
that all the relevant information can be obtained by a projection and is 
precisely contained in 15. From (2) we have 

lim rg)(glP(t)p) = Ig)(glp,) (8) 

and therefore we have the strong limit 

lim O(t) = 15, (9) 
l---~oo 

which would be the coarse-graining version of (3) and the main equation of 
the first technique [of course the same thing happens with the general projector 
II = Elgi)(gil, (gilg)) = ~ij]. It is easy to demonstrate that (9) is a limit in 
norm. From the above equations Lyapunov variables and entropy can be 
defined and master equations can be found [if some extra conditions are 
fulfilled (Courbage and Nicolis, 1990); these conditions are weaker as the 
systems become more chaotic]. 

But it is also evident that (9) can be obtained with a quite arbitrary state 
Ig) and that all the philosophy typical of the coarse-graining technique namely 
the definition and consideration of macroscopic and microscopic states 
(Zwanzig, 1960, 1966; Zurek, 1991) is just an intuitive justification to give 
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a physical meaning to the limit (9). But as this justification is really unneces- 
sary, since the relevant and important limit is (2), the physical explanation 
is redundant and all the philosophy of the coarse-graining technique can 
therefore be philosophically criticized (Prigogine, 1980). This is the main 
problem with coarse-graining. It is an arbitrary method. It works perfectly 
well, but it is difficult to justify, based on physical-philosophical (metaphysi- 
cal) arguments. 

In fact, coarse-graining contains the misleading statement: we cannot  
see microscopic states (i.e., p), but we can see macroscopic  states (i.e., ~). 
This statement leads to the problem of finding a unique a n d  reasonable 
definition for these macrostates. This problem is unsolved and, in our opinion, 
it will remain unsolved, since Ig) is essentially arbitrary. Also, if we arbitrarily 
choose some definition of macrostates, we are introducing a physical element 
that really is alien to the system itself, and therefore this definition, even if 
natural in particular examples, will be suspicious from a general point of view. 

The correct "no-graining" statement [at least to solve problem (ii)] is: 
we cannot  directly measure microscopic states (i.e., p), we can only measure 
mean values o f  physical  quantities or observables  [among them the projector 
P = Ig)(gl and therefore the arbitrarily defined macroscopic states]. This 
statement is completely true at the classical (and also the quantum) level 
(Castagnino and Laura, 1997a) and refers to all physical  observables  i f  the 
system is mixing.  Then we can rigorously say, e.g., that the two thermodynamic 
average variables (p) and (v) (i.e., the average pressure and specific volume) 
define the thermodynamic macrostate of a perfect gas, etc. 

3.2. Restricted Dynamics 

As we have shown, the main achievement of coarse-graining is the 
strong limit (9). Let us see how we can obtain a similar result using another 
mathematical structure, and in this way obtain the restricted dynamics formal- 
ism. Since the weak limit (2) is really a functional limit, this formalism 
essentially consists in using the mathematical of functionals. In fact, let 
be the usual Hilbert-Liouville space of the state function p, and ~ x  = 
the space of the linear operator on ~ .  We may think that not all p e ~ = 
.~x are physically admissible states. In fact: 

(i) Practically, real physical state functions are only measured at a finite 
number of points of phase space F and then they are interpolated as, e.g., 
polynomials (that belong to a space that we will call ~') which do not have 
sophisticated mathematical behaviors, e.g., they are continuous and derivable 
functions and not discontinuous, nonderivable functions, even if square- 
integrable. So it is reasonable that p(x) would be at least a Schwarz function, 
namely a continuous, infinitely derivable function, well-behaved in the even- 
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tual infinities of phase space (we will make this definition precise in the next 
section). So let us call qb_ the space of physically admissible states, (for the 
moment) an arbitrary space such that it is a complete space in some topology 
stronger than the topology of ~ ,  dense in .Y_ a subspace of ~ ,  and such that 

r C 5r = 5r (10) 

Also, @ will be dense in ~_ ,  in such a way that if we complete @ with the 
topology of ~_  we will obtain this space. If we consider the dual �9 x of 
~_ ,  we have a Gel 'fand triplet: 

�9 _ C ~ _  = ~ x  C ~ x  ( I I )  

The topology of �9 x will be weaker than that of ~_ .  
(ii) From Lasota-Mackey theorem we know that the function g of (2) 

and therefore the function O of (4) are just bounded, measurable functions 
and therefore they belong to a space larger than ,,~_, say a space B D ~_ .  
So we will postulate that: 

(a) Every physically admissible state P belongs to the space ~_  such 
that ~_  C ~_ .  

(b) Every observable belongs to space B, such that ~_  C B C �9 x. 
(iii) Furthermore, we know that not all the evolutions of state functions 

are physically admissible. The physically admissible evolutions are those that 
appear in the branch system, namely those that begin in an unstable state 
and go toward equilibrium (Gibbs ink drop spreading in a glass of water, a 
sugar lump dissolving in a cup of coffee, etc.). The physically inadmissible 
evolutions can be obtained by the time inversion of the admissible ones; 
therefore they begin in an equilibrium state and evolve toward an unstable 
state (the ink or the sugar concentrating spontaneously and creating a drop 
or a lump). This kind of evolution does not appear in the branch system nor 
in nature, because the spontaneous appearance of an unstable state by a 
fluctuation is highly improbable. Practically, unstable states are built before 
the instant of creation of the subsystem considered (the instant when we put 
the ink in the water or the lump in the coffee) by the action of a larger 
subsystem (the ink or the sugar factories) which also belongs to the branch 
system, but contains other processes that generate energy and go toward 
equilibrium (coal burning in the factory's oven). So ~_  will be the space of 
these admissible states, namely the space of the introduction, where we will 
use our main recipe. If T is the time inversion operator, the space of inadmissi- 
ble states is r T: ~ _  --* ~+, and we also know that ~_  :;a ~§ Furthermore, 
all the evolution of  any admissible state takes place within the apace 40_. 
Thus, using the usual terminology of axiomatic field theory (Bogulubov et 
aL, 1975), we will say that ~ _  will be the space of regular states, ~ _  the 
space of usual states, and �9 x the space of generalized states. In the limit of 
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t --* w some states may belong to do 5; e.g., from (2) we see that p ,  normally 
belongs to this space (really to space B C dO x_). 

(iv) Now usually we choose do_ to be a nuclear space with a nuclear 
topology, stronger than the norm topology of Liouville space ~ ,  and then 
dO x_ will be another nuclear space, with a nuclear topology weaker than the 
norm topology of ~ _ .  

Once we have chosen the space dO_ endowed with all these properties 
we can say that, as p and p ,  can be considered as functional on B C dO x_, 
from (2) it can be proved that 

lim P(t)p = p ,  (12) 

and we have found a different way to obtain a "strong" limit (precisely, a 
functional or distribution limit, with the convergence of the nuclear topology 
of do x_) corresponding to (2). So the new recipe consists in going from the 
realm of ttilbert space to the realm Of functionals or mathematical distribu- 
tions, which are endowed with a weaker topology, in such a way that the 
weak limit of  the Lasota-Mackey theorem becomes a limit in this weaker 
topology. So both methods reach the same goal, to go from a weak limit to 
a "strong" one, using projection in the case of coarse-graining, inventing a 
new topology in the case of  restricted dynamics. 

The problem is that there is no general method to define do_. Neverthe- 
less, as we will see, we have more general methods in the quantum case to 
define do_, a fact that supports the hope that also the classical problems could 
be solved. But in specific examples (Antoniou and Tasaki, 199l, 1993; 
Castagnino et al., 1997b) a space do_ is defined in such a way that Lyapunov 
variables, an entropy, and master equations can be defined as in the coarse- 
graining case. These examples show that if spaces do_ and do+ are properly 
defined, it can be proved that: 

(i) The space do x+(do x_) contains pure decaying (growing) states, having 
a damping factor e -'~' (a growing factor e "~') in their evolution (',/>- 0). These 
are the spaces of the generalized states (similar to planes waves or Dirac 
deltas) that appear in useful spectral decompositions. 

In fact, a complete set of  right eigenvalues of  the Liouville operator 
{In-)}  such that 

L l n - )  = zn ln - )  (13) 

where z, -- t~n - i',/,, % -> 0, and I n - )  e do x+ exists. A complete set of left 
eigenstates {In+)} such that 

(n+lL  = z*(n+l (14) 
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where In+) ~ �9 x also exists. If  Itp_) ~ qb_ and Icr+) ~ ~+, then 

(tp+lq~_) = ~ ( tp+ln-)(n+ltp_) (15) 
n 

in such a way that we can expand in a weak sense any Iq~_) ~ ~ _  as 

I tp_)= ~] In - ) (n+ l tp_)  (16) 
n 

I n - )  evolves as 

In ( t ) - )  = e-iZ"qn - )  = e-i ' , te-V,tln - )  (17) 

and as "Yn ~ 0 it is a decaying generalized state. Symmetrically, In+) is a 
growing generalized state. 

(ii) The usual evolution group, with evolution operator e -iLt (where L 
is the Liouville operator) valid for - ~  < t < ~, is split into two semigroups, 
one acting on qb_, with evolution evolution operator U_(t), namely U_(t): 
qb_ --. ~ _  valid for t > 0, with an evolution operator that cannot be inverted, 
the other acting in ~+, with evolution operator U+(t), namely U+(t): qb+ --* 
qb+, valid for t < 0, also with noninvertible evolution operator. So if we 
restrict the dynamics to the space of admissible states qb_, we cannot invert 
the evolution operators U_(t). This fact shows that we have obtained an 
irreversible evolution so we have really found a time-asymmetric theory. In 
other words, if we take qb_ as the state of  physical states, we have really 
broken the time symmetry, since we cannot find an inverted time operator 
U-l( t )  = U§ for t > 0, acting within ~ _ .  

(iii) A state p ~ ~b_ can be expanded in eigenvectors of the Liouville 
operator, with complex eigenvalues, that belong to �9 +x; then the time evolu- 
tion or p is an expansion of decreasing exponentials, 

p(t) = 9 .  + e-'~tPl + "'" (18) 

where P.  = const �9 e -~'t is the slowest decreasing exponent, and the dots 
symbolize higher powers of this exponent or faster decreasing exponents. 

The normalization conditions at any time t yields 

tr p(t) = tr p.(t)  = 1 . . . .  tr Pi = 0 (19) 

The last equations show that Pt is not a state, but only the coefficient of  a 
correction around the equilibrium state 9,-  It is explicitly proved in Castagnino 
and Laura (1997a) that Pl has a vanishing trace. 

(iv) The conditional entropy 

f r  log p(x) S(plp,) = - p(x) ~ dx (20) 

never decreases. In fact, it can be proved that if P(t) is a Markov operator 
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and p and cr are two densities, then (Mackey, 1989, 1992; Lasota and 
Mackey, 1985) 

S(P(t)plP(t)~r) > S(plcr) (21) 

If the evolution is reversible, we must have the equal sign, since t can be 
either positive or negative. Now as U_(t) is an irreversible Markov operator 
and p ,  is a stationary density, i.e., U_( t )p ,  = p, ,  then if p ~ do_: 

(a) Operator U_(t) is well defined only i f t  > 0; therefore it is possible that 

S(U_(t)plp,) > S(plp,)  (22) 

(b) Anyhow S is necessarily nondecreasing, e.g., it cannot have an 
oscillatory behavior. 

(c) But we can compute the conditional entropy (20) using (18) and 
(19) and we obtain 5 

S ( p ( t ) l p , ) = - I t  p l ~  p d x = p ,  -e-~'frPt(X)2p,(x) dx + ... (23) 

where the dots symbolize faster decreasing exponents. 
So, now we are sure that the conditional entropy always grows. 
Perhaps the main surprise with the restricted dynamics technique is that 

we now work in the space do_, where no "unphysical" states have been added 
since do_ C .~. Also, the space do_ is dense in the space 2~_, so if someone 
would say that 5g_ really is the space o f  "physical states," these states can 
be approximated by regular states of  the space dO_ as close as we want. 

But the space do_ (the mathematical object that defines the restricted 
dynamics)  is arbitrary up to a certain point. It fact, do_ is simply a space of  
undoubtedly physical states ~ completed with a topology in such a way that 
T: do_ 4: do_. We do not have a general method to define this topology in 
an arbitrary case. But we believe that it will be easier to find a canonical  
physically unique t ime-asymmetric topology than a coarse-graining. [In fact, 
in Bohm (1995) and Bohm et al. (1995b) it is claimed that there is only one 
way to choose do_ in the quantum case.] 

5As in this equation distributions are multiplied, some care must be taken in order to convince 
ourselves that what we are doing is mathematically correct. For example, the distributions 
can be transformed in ordinary density matrices by a A transformation (Castagnino et al., 
1997c). A is a transformation such that A-t ln+>e~; then we can define p,~ = A-Up, S = 
S(pAIpA,) (the exponent " -  I" is just a way to keep the traditional notation). This transformation 
maintains the damping factors, so the results obtained remain valid, but the distributions 
become ordinary matrices, which can he multiplied. It is precisely in this way that the r.h.s. 
of (23) becomes a well-defined expansion of decreasing exponentials. There are also more 
refined mathematical ways to reach to the desired result, such as that of (Castagnino and 
Laura, 1997a), Part III, and those based on the theory of locally convex spaces (in preparation). 
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So neither of the two formalisms is completely sinless. Nevertheless, 
as the real physical problem is solved by the Mackey and Lasota theorem, 
we can say that all these sins are venial sins. On the other hand, both 
approaches have some advantages, e.g.: 

(i) Coarse graining works just with one physical space, 2 .  Also, coarse- 
graining averages are unavoidable to calculate global thermodynamical vari- 
ables like temperature or pressure, but: 

(ii) The time evolution of 9(t) can be computed more easilyusing the 
restricted dynamics approach since we have the vectors of space dO x, that 
can be used to find new spectral expansions for the observables and the states 
of the problem. Once we know p(t), we can compute average states like i 
= Pp(t), while the direct computation of if(t) using coarse-graining technique 
directly can be more difficult (Zwanzig, 1960, 1966; Zurek, 1991). 

At this point we can see that coarse-graining and restricted dynamics 
are both based on the idea that we never have complete information on the 
system we are working with. In coarse-graining we have a "coarse" lack of 
information, because we neglect the irrelevant part. In restricted dynamics 
we have a "fine" lack of information--we ignore the topology and we are 
forced to choose one. So we can complete our state space ~ with some time- 
asymmetric topology and get do_ also obtaining a time-asymmetric theory. 

4. T H E  STATUS OF QUANTUM R E S T R I C T E D  DYNAMICS 

In this section we will briefly rephrase what we have said, but in the 
quantum case, and we will see how the Gel'fand triplet structure naturally 
appears. The diagrams (Bohm diagrams) that we will obtain will be our best 
conceptual tool to understand the relations among the different arrows of 
time, because they graphically represent complicated calculations. 

In fact, as several quantum observables are not even well defined in 
Hilbert space ~ ,  rigorous quantum mechanics is formulated in a Gel'fand 
triplet (Bogolubov et al., 1975): 

C g~ C ~x  (24) 

where: 
S ~ is the space of re~,ular states or test function space corresponding to 

Schwarz-class wavefunctions, which we will consider the real physical states. 
is the space of "states," or Hilbert space, introduced to extend the 

notion of probability to a larger space. These states are square-integrable 
wave functions, e.g., Schwarz functions where a finite set of points is removed 
from the surface representing the function. Therefore they are not derivable 
and so it is impossible to compute, e.g., the momenta or the energy using 
these kinds of functions. 
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~• is the space of "generalized states," or rigged Hilbert space, namely 
the space of functionals over 5 ~ (like plane waves or Dirac deltas) that are 
essentially used to find the spectral expansion of the regular states. 

Let K be the Wigner or time-inversion operator. In the usual time- 
symmetric or reversible quantum mechanics the evolution Hamiltonian H is 
time-symmetric, i.e., 

K H K t  = H (25) 

In fact, if it were time-asymmetric, the theory would be trivially time- 
asymmetric, and we know that such a trivial theory does not coincide with 
physical reality. In the wave function representation Kcoincides with complex 
conjugation, so it is defined over b ~ by 

Therefore 

Ktp(x) = tp*(x) (26) 

K: if--+ ~ (27) 

But the real universe and macroscopic objects clearly have time-asym- 
metric evolutions, so we must explain how this time asymmetry appears if 
the basic quantum mechanical laws of the universe are time-symmetric. Also, 
at this quantum level, the usual and successful explanation is based on coarse- 
graining: macroscopic objects have a huge number of dynamical variables 
and we can only measure and control a small number of them, the so-called 
relevant variables. If we neglect the rest of the variables, the irrelevant 
ones, we obtain time-asymmetric evolution equations (Zwanzig, 1960, 1966; 
Zurek, 199 I). 

Nevertheless, in this section [according to the line of thought pioneered 
in Bohm, (1986, 1995), Bohm et al. ( 1989, 1995b), Bohm and Gadella (1989), 
Antoniou and Prigogine (1993), and Sudarshan et  aL (1978)] we want to 
stress the importance of restricted dynamics, because we believe that the 
development of an alternative theory will enhance our knowledge about time- 
asymmetry and give us new quantum mechanical tools (e.g., Bohm diagrams). 
Thus we want to sketch an irreversible quantum theory which explains time 
asymmetry directly from the basic microscopic level. In this way we will 
have two (probably equivalent) theories to compare. 

Obviously we want to obtain our new theory making minimal changes 
to the well-established and usual quantum mechanics. If we change (25) or 
(26), we are almost sure to find experimental problems. So the minimal 
modification is to change (27), defining a new test function space dp_ C b ~ 
such that 

K: ~ -  --+ ~b- :~ ~b- (28) 
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In this way K is not even defined over the space of regular states 4,_ and 
naturally time asymmetry appears. From now on ~b_ will take the role of 5 ~ 
so regular states will belong to qb_, etc. 

It can be demonstrated that an irreversible quantum theory based on a 
Gel' fand triplet 

~b_ C ~ _  C ~b x (29) 

is feasible and yields reasonable physical results, such as the decaying of 
unstable states, decoherence, the golden rule, etc., if test function space ~b_ 
is properly chosen. We can also show that what it is done in papers cited 
above is essentially our minimal modification of the ordinary reversible 
quantum theory (Castagnino and Laura, 1997a). But with this new approach 
we gain a clearer comprehension of the extension from the reversible quantum 
theory to the irreversible one described in these papers. 

Let us consider a quantum system with a spectrum endowed with a 
continuous component to, say 0 - ~ < ~ (the presence of this continuous 
spectrum seems necessary to construct the theory also in the classical case, 
since the mixing evolution operators have continuous spectra). Then the test 
function space ~ _  is chosen such that, if q~ ~ ~ _ ,  then in the energy 
representation q~(~) ~ /_/2 i.e., Hardy class from below [essentially the ana- 
lytical continuation of q~(oJ) is holomorphic in the lower halGplane]. If also 
qD(~) e ~ then q~ ~ ~_ C ~ _ .  Then, in usual scattering models with 
resonances (Bohm, 1986, 1995; Bohm el al., 1989, n.d.; Bohm and Gadella, 
1989; Antoniou and Prigogine, 1993) it is shown that: 

(i) Condition (28) is fulfilled and 6+ contains all functions such that 
q~(~) e /_/2., the Hardy class from above. Also, q~(~) e ~. 

(ii) ~b +x(6 x_) contains pure decaying (growing) states, having a damping 
Factor e -'~t (a growing Factor e w) in their evolution (~ ~ 0), as we will see. 

Each lower (upper) half-plane simple pole of the S-matrix z,,, Im z,, < 
0 (Im z > 0), corresponds to a left-eigenstate of the (perturbed) Hamiltonian 
In-> e ~bX(In+> e qbx_) with eigenvalue zn which is a decaying (growing) 
Gamow vector. Ordinary states can be expanded on bases containing these 
Gamow vectors: e.g., any state of ~b_ can be expanded in eigenvectors of 
the Hamiltonian belonging to the space ~b x. These expansions are useful to 
compute time evolutions, since these bases are adapted to the evolution of 
unstable states (not using these bases as a computation device is as inconve- 
nient as not using spherical waves in scattering problem with spherical 
symmetry). 

In fact, a complete set of right eigenvalues of the Hamiltonian operator 
{In-)} exists such that 

H I n - >  = z,,In-> (30) 
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where zn = to. - i%, % >--- 0, and I n - )  E dox. A complete set of left 
eigenstates {In+)} such that 

(n+lH = z*(n+l (31) 

where In+} ~ dox_, also exists. If Iq0_) e do_ and Iq~§ e 6+, then 

(tp~_lq~_} = ~ (,,p+ln-)(n+lq~_} (32) 
f l  

in such a way that we can expand in a weak sense any Iq~_) e do_ as 

I~p_) = ~ In-)Kn+ttp_) (33) 
I I  

I n - )  evolves as 

In(t)-)  = e-i:'aln - }  = e-i~~ - }  (34) 

and as 3'n >- 0, it is a decaying generalized state. Symmetrically, I n - )  is a 
growing generalized state. 

Usually the sum in (32) and (33) represents a sum and an integral; 

(q~+l~p_> = ~ (~p+l,,-)(,, + I~p_> + (~+lto->(to+l~p_> ,1to (35) 
n 

where each index n corresponds to a pole z, of the S-matrix. The continuous 
spectrum 0 -< to < ar is usually real, although in some cases complex 
continuous spectra studied (Sudarshan, 1993; Gadella and Rudin, 1996). 

(iii) The usual evolution group, with evolution operator e -ira, valid for 
- ~  < t < % is split into two semigroups, one acting on do_, with evolution 
operator U_(t) valid for t > 0, such that it cannot be inverted, the other 
acting in d0+, with evolution operator U§ valid for t < 0, also a noninvertible 
evolution operator. The fact that we cannot invert these evolution operators 
shows that we have really found a time-asymmetric theory. 

(iv) An "in" stable eigenstate In) e ~ of the unpreturbed Hamiltonian 
(defined in the far past) is transformed by the interaction into a growing 
eigenstate In+} e dox_ of the total Hamiltonian, representing the unstable 
state ion its creation process, and a damped eigenstate In-} e dox of  the 
same perturbed Hamiltonian, representing the corresponding unstable state 
in the decaying process (which goes to an "out" stable state In} e ~ ,  in the 
far future). 

(v) Mixed decaying states can be studied in the Gel'fand triplet 

where q b  = do_ | do_, the quantum Liouville space is ~ = ~ | ~ ,  etc. 
The same holds for growing states, changing - by +. These quantum spaces 
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are related via the Wigner integral to the corresponding classical ones (Castag- 
nino et  al., 1997). Using quantum (or classical) mixed states, it can be proved 
that the time evolution of a state of p(t) ~ ~ _x reads [cf. (18)] 

p(t) = p .  + e-'apl + .-- (36) 

where the dots symbolize higher powers of the exponent e -~' or faster decreas- 
ing terms. Using this evolution, we can find a nondecreasing conditional 
entropy [cf. (23)] 

S = - t r [p log (p .  ~p)] (37) 

In order to understand the relation among these states, we can compute 
the survival probability of state In): P(t )  = I<nln(t)>l 2. This probability is 
shown in Fig. 2, where we can see that there is a period, around time t = 
0, that corresponds to the transition from the creation process to the decaying 
process (Zeno period), two large periods with exponential behavior (one 
growing, the other decaying), and two (initial and final) period (Khalfin 
periods). The figure is symmetric, because In) ~ ~ ,  and this space has no 
time asymmetry. The survival probabilities of unstable states In-> 

dp +x and In+> ~ qb x are shown in Fig. 3. They have only a unique exponen- 
tial behavior period, showing the nature of these Gamow vectors; they either 
grow or decay eternally. They are as eternal as plane waves that belong to 
b "• Therefore these Gamow vectors represent the exponential periods of the 
time evolution of In), where the Zeno and Khalfin effects are eliminated. 
Also each curve in Fig. 3 is asymmetric to the other one, showing that time 
symmetry appears in spaces ~b ~ and qb x. 

Let ~ ~ ~ _ ;  as ~b_ is dense in ~ _ ,  the state q~ can be approximated 
as closely as we want by a sequence of states q~) ~ dp_, and also another 
sequence of states ~g~ ~ ~+ for q~ ~ ~+. Then, if ~o = tp(0) is considered a 
state at a time t = 0, we have that: 

P (t) 

. Z e n o  

D 

t 
Fig. 2. The survival probability of a state In>. 
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Fig.  3. The  survival  probabili t ies of  states I n+ )  and I n - ) .  

The evolution of the creation process is qo§ = U§ for t < 0. 
The evolution of the decaying process is q~_(t) = U_(t)q~_(O) for 
t > 0 .  

To have a graphic idea of the nature of the unstable states, let us draw 
the ordinary diagram of a scattering (Fig. 4). In the center of the diagram 
there is a black box that symbolizes any resonant scattering process. A set 
of stable "in" states a~, a2 . . . .  is transformed by the scattering process into 
another set of stable "out" states bt, b2 . . . . .  It is a reversible process because 
the evolution equations are time-reversible, so we can interchange the "in" 
and "out" states and all the results remain valid. In fact, Fig. 4 is essentially 
symmetric, like the curve in Fig. 2. 

Now, let us cut the black box into two parts by a dotted line drawn at 
t = 0. Then, we can consider the right side of the figure, namely Fig. 5. This 
figure was introduced by Bohm (1986), so we will call this kind of figure a 
Bohm diagram. In Fig. 5 the set of stable "in" states creates a set of  unstable 
states ub uz . . . .  which are growing states and they belong to space qb x. (e.g., 
radiation exciting an electron of the ground state). As the states of  4~. are 
linear combinations of the states of qbx_, in some sense they can also be 
considered as growing states and they can be symbolized as horizontal lines 

..••al b I..,, 

L :,:i~-:ii~!~: ~ !: i~:. , . . :  
�9 : L -  ~ . L ' - ' : . :  " ' : .  . . <  . . . . . .  . 

:' " , ~:%-: '~;. ii . " .  ..., '.. 

�9 : ~  r 

. L ' i "" "" 

I 

i 

Fig. 4. Ordinary  scat ter ing d iagram,  with a black box. 
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Fig. 5. Bohm diagram for growing states. 

al 

U2 
1 

inside the half box. Figure 5 is asymmetric (like the growing hyperbola of 
Fig. 3) and it symbolizes an irreversible creation process. The evolution 
equations are still time-symmetric, but irreversibility is introduced by the 
growing nature of the states of the space do x or by the noninvertible semigroup 
acting on d0+ for t < 0 (namely by a generalized symmetry breaking). Using 
this space, we introduce an arrow of time, precisely the QAT. 

We can also consider the second half of Fig. 4, namely Fig. 6. It is the 
Bohm diagram of a decaying process where a set of unstable decaying states 
ut, u2 . . . .  that belongs to do x is transformed into a set of stable "out" states 
(an excited electron decaying into the ground state and emitting radiation). 
Figure 6 is asymmetric (like the decaying hyperbola of Fig. 3) and symbolizes 
a decaying irreversible process. Again, the evolution equations are still time- 
symmetric, but the decaying nature of the states of the space do .x introduces 
the irreversibility (by generalized symmetry breaking), etc. If we use this 
space, we can also introduce a QAT. 

Bohm diagrams allow us to see the quantum structure of a branch system 
(Fig. 7). The universe is represented by a set of scattering processes with 
one initial unstable state symbolized by the cut box (at "big-bang" time 
t = 0) on the far left. Each subsystem going from an unstable state to 
equilibrium (e.g., the ink drop spreading in water) is symbolized by a decaying 

UI 
U2 

Uh 

bl 

Fig. 6. Bohm diagram for decaying states. 
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~ ~ 

Fig. 7. Bohm diagram for the branch system. 

process like the one of Fig. 6, namely the diagram in the shaded box of Fig. 
7. The creation of an unstable state is symbolized by a creation process (like 
the one of Fig. 5) where energy comes from a previous decaying process (e.g., 
the ink factory with its oven). One of these larger subsystems is represented in 
the dotted box in Fig. 7. The overall process is irreversible, because Fig. 7 
is asymmetric, and if we were to make a model of this universe (Castagnino 
et al., 1996b; Castagnino and Laura, 1994) the state of the universe must 
belong to some global space qb x or �9 x. Therefore in this diagram there is 
a clear arrow of time. But in the previous diagrams (Fig. 5 or Fig. 6) the 
arrow of time a was "local" one, while in this diagram it has one of the most 
important characteristics of the observed time asymmetry: it is global. This 
is the way to introduce the arrow of time in the restricted dynamics formalism: 
by a global and generalized (since there is not a potential field with two 
symmetric minima) symmetry-breaking process. 

To continue with our discussion it is imperative to introduce some 
terminology. 

5. CONVENTIONAL VS. SUBSTANTIAL 

Someone might say that we have introduced the arrow of time "by hand" 
when we chose the space qb_ or ~b+ as the space of physical states. In order 
to answer this criticism, we must define two important words: "conventional" 
and "substantial." 

�9 In mathematics we are used to working with identical objects, like 
points, the two directions of an axis, the two semicones of a light 
cone, the two time orientations of a time-oriented manifold, etc. 

�9 In physics there are also identical objects, like identical particles, the 
two spin directions, the two minima of a typical "two-minimum" 
potential, etc. 

�9 When (Sachs, t987; Penrose, 1979) we are forced to call two identical 
objects by different names we will say that we are establishing a 
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conventional difference, e.g., when we call el and e2 two electrons, 
or "up" and "down" two spin directions, or "right" and "left" two 
minima of a symmetric potential curve; while; 

�9 If we call two different objects by different names, we will say that 
we are establishing a substantial difference. 

The problem of time asymmetry is that, in all normal time-symmetric 
physical theories, usually the difference between past and future is just con- 
ventional. In fact, we can change the word "past" by the word "future" in 
these theories and nothing changes ("in" states are only conventionally differ- 
ent from "out" states in Fig. 4 and they can be interchanged). But we have 
the clear psychological feeling that the past is substantially different than the 
future. Thus the problem of the arrow of time is to find theories where past 
is substantially different than future, such that the usual well-established 
physics remains valid. Our minimal irreversible quantum mechanics of Sec- 
tion 4 is one of these theories. 

In fact, the difference between the global +_ and the global qb+ of the 
whole universe branch system is just conventional, since these two spaces 
are identical (as identical as the two minima of a potential). Thus physics is 
the same in qb_ as in +§ In a cosmological model (Fig. 7) life will be the 
same, in this universe with a quantum state in space qb_, as in the universe 
of Fig. 8, the time-inverted image of Fig. 7, with quantum state in space ~b§ 
In fact, since in both models of the universe (if completely computed) all 
the arrows of time must point to the same direction, there is no physical way 
to decide if we are in one model or the other. So both models are identical. 
Thus the choice between qb_ and ~b. is just conventional and physically 
irrelevant (like the choice of one of the two minima of the potential in 
spontaneous symmetry breaking). 

But once this choice is made a substantial difference is established in 
the model, e.g., the only time evolution operator is U_(t) = e -iHt, t > O, and 
it cannot be inverted; we have equilibrium only toward the future, etc. (as 
when we choose one of the two minima of the potential, a substantial time 
asymmetry appears in a spontaneous symmetry breaking). 

Fig. 8. Mirror image of Fig. 7. 
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Once the qb_ or the qb+ is chosen in the global branch system we are 
forced to choose the corresponding spaces in the local subsystems if we want 
to study these subsystems as isolated systems, and a global arrow of time 
is established. 

Thus, the choice between qb_ and d~+ is trivial and unimportant, which 
is why the arrow of time is not introduced by hand in the restricted dynamics 
theory. The important choice is between ~ (or 9)  and qb_ (or ~b.) as the 
space of our physical states. And we are free to make this choice, since a 
good physical theory begins by the choice of the best mathematical structure 
to mimic nature. Thus, our thesis is essentially that time-asymmetric mathe- 
matical structures mimic better the time-asymmetric nature where we live 
than do time-symmetric mathematical structures. 

6. T H E  E N T R O P Y  GAP 

Let us go back again to problem (A): Why did the universe begin in an 
unstable low-entropy state? 

If we exclude a miraculous act of creation, we have only three scien- 
tific answers: 

(i) The unstable initial state of the universe is a law of nature. 
(ii) This state was produced by a fluctuation. 
(iii) The expansion of the universe (coupled to the nuclear reactions in 

it) produces a decreasing of the (matter-radiation) entropy, so we can explain 
why there were low-entropy states in some periods of the evolution of  the 
universe. 

The first solution is only a way to bypass the problem, while the fluctua- 
tion solution is extremely improbable. In fact, the probability of a fluctuation 
diminishes with the number of particles of the considered system, and the 
universe is the system with the largest number of particles. 

The third solution was sketched by Davies (1994) only as a qualitative 
explanation. The expansion of the universe is like an external agency (namely: 
external to the matter-radiation system of the universe) that produces a 
decreasing of its matter-radiation entropy, not only at t = 0, but in a long 
period of the universe evolution. It is this matter-radiation subsystem within 
the universe what we have considered as "the universe" up to now, since we 
have neither considered the gravitational field nor defined an entropy for this 
field (see Introduction). In this paper we will try to give a quantitative structure 
to Davies' solution (see also Aquilano and Castagnino, 1996), using an 
oversimplified cosmological model which yields a first rough numerical 
coincidence with observational data. Essentially the gravitational field has 
two different effects that modify entropy in the universe. These two effects 
can be explained heuristically as follows: 
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(i) The expansion of the universe behaves like a moving wall creating 
more space in a room. If  the room was full with a very viscous fluid, when 
the wall moves it creates empty space and therefore a structure where there 
was nothing. Entropy, in consequence, decreases. 

(ii) Gravitational attraction creates condensation of what we can consider 
"viscous" matter. The motion of these viscous currents is irreversible. Entropy, 
in consequence, grows. 

For simplicity, we will only consider the effect of the first process. 
Nevertheless, it is well known that the homogeneous universe expansion 

alone is a reversible process with constant entropy (Tolman, 1987; Misner 
et  al., 1970). The radiation of the universe is therefore in a thermic equilibrium 
state p ,  at any time, and also in therrnic equilibrium with almost all the 
matter. As the radiation is the only important component, from the thermody- 
namic point of  view, we can choose p ,  as a blackbody radiation state (Peebles, 
1993), namely p ,  will be a diagonal matrix with main diagonal 

1 
p,( to)  = Z Z  - 3 -  (38) 

e ~ J I T -  l 

where T is the temperature, to is the energy, and Z is a normalization constant 
[Landau and Lifshitz, (1958), equations (60.4) and (60.10)]. The total 
entropy is 

S = 16  o.VZ 3 (39) 

(Landau and Lifshitz, 1958) equation (60.13)], where o" is the Stefan-  
Boitzmann constant and V is a comoving volume. 

Let us consider an isotropic and homogeneous model of the universe 
with radius (or scale) a. As V --  a 3, and from the conservation of the energy- 
momentum tensor and radiation state equation, we know that T -- a-~, and 
we can verify that S = const. So the irreversible nature of the universe 
evolution is not produced by the universe expansion alone, even if p,(t)  has 
a slow time variation. 

Then the main process that has an irreversible nature is the burning of 
unstable H in stars (which produces He and, after a chain of nuclear reactions, 
Fe). This nuclear reaction process has certain mean lifetime tuR= ~/-1 and 
therefore phenomenologically we can say the state of the universe at time t is 

p(t) = p,(t)  + pie  - w  + O[("/t) - t ]  (40) 

where p~ is certain phenomenological coefficient, constant in time, since all 
the time variation of nuclear reactions is embodied in the exponential law 
e -'~'. We can also see on phenomenological grounds that 9~ must peak strongly 
around tol, the characteristic energy of the nuclear process. 
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All these reasonable phenomenological facts can also be explained 
theoretically: 

We know that a real decaying evolution is not perfectly exponential, 
but has a strong exponential behavior which is modified for short times by 
the Zeno effect and for long times by the Khalfin effect (Sudarshan et al., 

1978). These effects are unimportant for the average times we will consider 
and they are neglected in (40). With this simplification, (40) can be computed 
with the theory of Sudarshan et al. (1978). It can also be computed with 
rigged Hilbert space theory of Bohm (1986), Bohm et al. (1989), Bohm and 
Gadella (1989), and Antoniou and Prigogine (1993), as we have already said 
[cf. (36)]. In Castagnino and Laura (1997a) it is explicitly proved that p~ 
peaks strongly at the energy to~ and becomes a Dirac delta in the limit of 
large time and small coupling coefficient. 

Now we are able to compute the entropy gap,  namely the (matter- 
radiation) entropy with respect to the equilibrium state p ,  [we repeat that 
we do not consider the eventual entropy of the gravitational field, as in Davies 
(1994)]. Precisely, if S = S~  is the actual entropy of the universe, which 
will necessarily grow if we take into account all the features of the irreversible 
evolution of the universe [e.g. the viscous currents of point (ii)] and Sm,x is 
the maximal possible entropy at a time t, the entropy gap is AS = S,c, - 
Sm~,. This entropy gap will be the conditional entropy [cf. (37)] of the state 
p(t) with respect to the equilibrium state p .  (Mackey, 1989, 1992; Lasota 
and Mackey, 1985): 

AS = - t r [p  log(p,tp)] (41) 

As in (23), and considering only times t > >  tue = .y-z, we can expand the 
logarithm to obtain 

AS ~ - e  - v  tr(p,tpT) (42) 

where we have used (19). Now we can introduce the equilibrium state (38) 
for to > >  T; then 

A S  ~ - Z - I T 3 e - ' Y t  tr(e,arp 7) (43) 

where e ~/r is a diagonal matrix with this function as diagonal. But as pl is 
peaked around o~t, we arrive to a final formula for the entropy gap: 

AS  .~ - C T 3 e - ' ~ ' e  ~ / r  (44) 

where C is a positive constant. 

6.1. Evolution of the En t ropy  Gap 

As we will see, the expansion of the universe will produce a decreasing 
of the (matter-radiation) entropy even for large times. So we will focus on 
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computation at times bigger than the decoupling time; therefore a ~ t 2/3 and 
T -  a - i .  Then we have 

[ to \  2/3 

where to is the age o f  the universe and To the present temperature. Then 

AS ~ - Cl e-Vt  -2e(" '/r~176 (46) 

where C t is a positive constant. Figure 9 is a graphic representation of  curve 
AS(t) .  It has a maximum at t = tcq and a minimum at t = t~q. We will find 
an estimate of  the physical data before we discuss the curve AS(t) .  Figure 
10 shows AS as the difference between Smax and Sact. Let us compute these 
critical times. The time derivative o f  the entropy reads 

A S  ~ - Y  - 2 t - I  + 3 toTo A S  (47) 

This equation shows two antagonistic effects. The universe expansion effect 
is embodied in the second and third terms in the square brackets and it acts 
external to the matter-radiation system such that if we neglect the second 
term, it tries to increase the entropy gap and therefore it tries to take the 
system away from equilibrium at any time t (as we will see, the second term 
is practically negligible). On the other hand, the nuclear reactions embodied 

A S t~r~ t~R t~a  t 

:"~ 

/ 
i 

Fig. 9. The evolution of the entropy gap. This figure is only qualitative; scales are not 
the real ones. 
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 !et 
t 

Fig. 10. The evolution of Smax and S~t. This figure is also only qualitative. 

in the "V term try to convey the matter-radiation system toward equilibrium. 
These effects become equal at the critical time tcr such that 

t/3 
yt0 + 2 t~ - 20Jt (t0 / (48) 

t~ 3 TO \tcr] 

For almost all reasonable numerical values this equation has two positive 
roots, such that t~ < <  to < <  tc~2. Precisely: 

(i) For the first root we can neglect the yt 0 term and we obtain 

t~r, to(3 T~ ~- - -  ( 4 9 )  
tot/ 

(this quantity, with minus sign, gives the third, unphysical root). 
(ii) For the second root we can neglect the 2(to/tot) term, and we find 

f2 tot tN_RRX~ 3 
tc~2"~ t~ to/I (50) 

where tNR is the mean lifetime of nuclear reaction within the stars. 

6.2. N u m e r i c a l  E s t i m a t e s  

We must choose numerical values for the following four parameters: 

tot = TNm the energy or temperature of nuclear reactions. 
tSR = ~/- t  the mean lifetime of nuclear reactions. 
to, the age of the universe. 
To, the present temperature of the universe. 

TNR and tNR can be chosen in the following ranges (Jones and 
Forman, 1992): 

TNR = 106-108K 

tN~ = 106-109 years (51) 
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while for to and To we can take 

to = 1.5 • 10 ~~ years (52) 

To = 3K 

In order to obtain a reasonable result, we choose the lower bounds for TNR 
and tNR [remember that our model is oversimplified, since we are using only 
cause (i) to explain the global entropy evolution] and for tcr~ we obtain 

~cr I ~ 1.5 X 10 3 years (53) 

So t~  is smaller than the decoupling time and therefore must not be consid- 
ered, since the physical processes before this time are different than those 
considered in our model. Also, we must only consider times t > tue = 3'-t,  
in order to use (42). So only the r.h.s, of the dashed line of Fig. 9 can 
be considered. 

For t ,  2 we obtain 

t,,-2_ < 104/'0 (54) 

From (53) and (54) we can see that in fact tcr~ < <  to < <  tcr2- Thus: 
�9 From tNR tO tcr~ the expansion of the universe produces a decrease of  

entropy, according to Davies' prediction. It also produces a growth of order, 
and therefore creation of structures like clusters, galaxies, and stars 
(Reeves, 1993). 

�9 After tcrz we have a growth of entropy, a decrease of  order, and a 
spreading of the structures: stellar energy is spread in the universe, which 
ends in a thermic equilibrium (Dicus et  al.,  1982). In fact, when t ---> co the 
entropy vanishes [see (46)] and the universe reaches a thermic equilibrium 
final state. 

tc~2 _< 10*to is the frontier between the two periods. Is the order of  
magnitude of tcr2 a realistic one? In fact it is, 10ato -~ 1.5 • 10 l* years after 
the big-bang all the stars will exhaust their fuel (Dicus et  aL, 1982), so the 
border between the two periods most likely has this order of  magnitude and 
must also be smaller than this number. This is precisely the result of our 
calculations. This result is fairly good, since we have only used one of the 
causes of  the decreasing of entropy, namely (i). We cannot use cause (ii) in 
a homogeneous universe. So in more refined inhomogeneous models it may 
be that the average values of  (51) could be considered. But essentially our 
oversimplified model proves that low-entropy states within the universe, 
not only at the beginning, but during a long period of its history, can be 
reasonably understood. 
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Fig. 11. Bohm diagram of a branch system with continuous creation of instability. 

The Bohm diagram of this process is shown in Fig. 11, where we do 
not have an initial unstable state, as in Fig. 7, but a continuous production 
of unstable states by an external agency. Figure 11 is as asymmetric as Fig. 
7, so it also defines an arrow of time. 

In this section we have avoided two major problems: 
�9 The definition of the entropy of the gravitational filed, since we have 

only worked with the matter-radiation entropy. 
�9 The initial state of the universe, which probably must be described 

using quantum gravity, because we have only considered time t > tuR. 
Even though these simplifications allowed us to do the calculation, it 

is evident that it would be important to have a more complete model to really 
understand the problem. 

7. C O O R D I N A T I O N  OF T H E  A R R O W S  OF T I M E  

Let us now go to problem (C). In this section we will follow the spirit 
of this the paper and base all reasoning on Bohm diagrams, which symbolize 
specific calculations (like Feynman graphs). Most of these calculations can 
be found in the literature (the remainder are too elementary, but some of them 
must be done, so this section cannot be considered complete in all details.). 

We can say that the main historical uncorrelated arrows of time are: 
(i) BAT. As explained in the Introduction, this arrows goes, at least in 

our version, from an unstable initial state (the real cause of the process) in 
any subsystem of the branch system to a stable equilibrium final state of the 
motion. In a different form this was introduced by Reicbenbach (1956). As 
we will see, it can be considered the master  arrow o f  time, since it is the 
one that coordinates all the others. 

(ii) QAT. This goes from the preparation of a quantum state of a scattering 
experiment to the measurement. In its primitive version, it was the arrow of 
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time related to the collapse of the wave function (a clear time-irreversible 
quantum process) and was introduced by Bohr and studied in what was called 
the Bohr-Ludwig program (Ludwig, 1979). 

(iii) GAT. Usually it is postulated that space-time is a time-oriented 
Riemannian manifold (Lichnerowicz, 1964) that defines two different classes 
of light semicones, the future and the past ones, all over the manifold. 
One orientation is conventionally called the past and the other orientation 
the future. 

Let us see how these three arrows are related. 
In its final version QAT considers that the "in" preparation states are 

related to the notion of states o f  the system and the "out" measured states 
are related to the notion of observable (Bohm, 1995; Bohm et al., 1995b; 
Antoniou et al., 1995). Since the notions of state and observable are substan- 
tially different, we could conclude that QAT is substantially defined, at least 
experimentally. Nevertheless, both states and observables are mathematically 
symbolized by matrices, so one may argue that on theoretical grounds the 
above difference is only conventional. Somehow it seems that the difference 
is really only contained in the mind of the physicist making the experiment, 
who knows which are the matrices that correspond to the prepared states and 
which are the matrices that correspond to the measured states. In fact, it is 
not evident that the difference between preparation and measurement would 
be substantial in a natural spontaneous scattering process. But if we consider 
the scattering process not as an isolated phenomenon, but within the branch 
system of the universe, we find that it has the diagram inside the dotted box 
of Fig. 7, namely Fig. 12, where we can see the source of energy that 
accelerates the incident particles (because there must always be a source 
related to the acceleration process) is necessarily produced by a previous 
unstable state (the half box on the left of Fig. 12). Figure 12 is then asymmetric 
and we see in this perspective that the difference is really substantial, and it 
defines a local QAT that coincides with the global BAT, as is evident from 
Fig. 7. So QAT = BAT. 

It is quite evident that locally (i.e., in the laboratory) GAT is oriented 
in such a way that it coincides with BAT. As far as we know, this also 

Fig. 12. Bohm diagram of an acceleration preparation-measurement process. 
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happens in all the observable universe, and we can conclude that globally 
GAT = BAT, and as QAT = BAT, all three arrows coincide. 

But we can try to establish the relation GAT -- QAT directly. In fact, 
the geometry of space-time is equivalent to a gravitational (time-variable in 
general) field that produces (or destroys) particles. The S-matrix of this 
process generally has an infinite set of poles or resonances (Castagnino et 
al., 1995a; Castagnino and Lombardo, 1996) and therefore we can find all 
the elements of a usual scattering process in it, namely the 0 -  and ~b+ spaces, 
growing and decaying states, etc. The only difference is that now we are 
dealing with an external agency, the gravitational field, that produces the 
scattering process, and it is a time-dependent field, so the corresponding 
diagram is not the one of Fig. 7, but the one of Fig. 11. But as both diagrams 
are time-asymmetric, we have an arrow of time defined in both diagrams. Thus 
Fig. 11 also symbolizes a curved space-time particle creation (or annihilation) 
process where the external agency is the variable gravitational field, participat- 
ing in the global branch system, since its variation is a consequence of the 
unstable initial conditions of the universe (so the semi-boxes of Fig. 11 are 
well drawn). Therefore the arrow of time defined from the asymmetry of 
Fig. 10 is the GAT, since the two orientations or classes of semicones can 
be named the past class, oriented toward the cause of the process (i.e., the 
"big bang") and the future class, oriented in the opposite direction. So GAT 
= QAT, also in a direct way. 

Now we can see the relation with the other arrows of time: 
The quantum Gel ' fand triplet structure is completely equivalent to the 

classical Gel '  fand triplet structure and they can be related to a Wigner integral 
(Antoniou and Tasaki, 1991, 1993) But the latter structure allows us to define 
classical Lyapunov variables (Castagnino et al., 1997c). Therefore QAT = 
TAT. But we can directly go from QAT to TAT, as can be seen if we consider 
the quantum definition of entropy (37) and rephrase what we have said in 
the classical case. 

EMAT is just GAT, because it is the choice of  the past semicone to 
define the retarded solutions as the causal ones, so EMAT = GAT. 

Let us now go to PAT. Of  course, to understand this arrow completely 
we would need to use biological and psychological notions, which are beyond 
our field of  research. Nevertheless, PAT is the intuitive and oldest notion we 
have about the flow of time, so we cannot leave the PAT completely outside 
of our research. Therefore we will make some observations to convince the 
reader that our formalism introduces enough elements to allow a future 
convincing proof that PAT = BAT. 

Let us first observe that our brain, considered as a machine, is also 
included in the branch global system of the universe. In fact, neurons burn 
carbohydrates, going from unstable to stables equilibrium states. Therefore 
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Fig. 13. Bohm diagram of a message in space-time. 

it is not surprising that we can feel this physical process as the psychological 
flow of time. 

There are two other features that are essential to the PAT that can be 
treated with our formalism, namely, on one hand, the "historical" nature of  
PAT, in the sense that we can conceive time as an increase of history that 
goes from a known past to an unknown future (SchrOdinger, 1950), and on 
the other hand, the feeling that we are all in a common "'present", in the 
sense that we share a common history. Let us first consider that every message 
is equivalent to the transport of  a certain amount of  energy. This energy must 
be necessarily created by a decaying process near the emission point. Then 
let us draw what we can consider the Bohm diagram of the path of a message 
in space-time (Fig. 13). It is a didactic superposition of a past light semicone 
with its vertex at the reception point and the Bohm diagram of a decaying 
process, showing the source, which must necessarily be placed inside the 
past light cone. Now we can draw the space-time path of  an observer receiving 
all kinds of messages from the universe (Fig. 14). The amount of information 
he has (his history) grows when the observer goes from the left (past) to the 
right (future). As the growth of history is considered by the observer as his 
PAT, this arrow coincides with BAT (and GAT). Now let us consider two 
near observers (Fig. 15). They share a common portion of history (the shaded 

Fig. 14. Bohm diagram of the increasing of an observer history. 
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Fig. 15. Bohm diagram of the common notion of the present of two observers. 

area of Fig. 15). Let us now go to the classical limit where light cones angles 
are "rr. For simplicity we consider that the two observers do not move with 
respect to the reference system, so their  paths are parallel straight lines, 
normal to the light cones (see Fig. 16). This is of course the sensible psycho- 
logical case. The observers will say that they are in a common (universal, 
absolute) present if their histories, which they both know, are exactly the 
same. In this case the notion of the present is an absolute one. Of  course in 
the general relativistic case this absolute notion is lost (Fig. 15), but this is 
not the psychological case, since we do not perceive any relativistic correction. 
The absolute present that we feel is, of course, a classical notion. This is all 
that we can say about PAT. Most likely PAT is the combined feeling of our 
brain burning carbohydrates, the growth of history, and the fact that this 
history is shared by other observers when they are in our present. Then also 
PAT = BAT. 

Finally, let us consider CAT. The relation of this arrow to the others is 
model dependent. If we choose an expanding model of the universe, it 
coincides with all the others. If  we choose a model of a expanding-contracting 
universe, it coincides with all others only in the expansion period. These 
facts can be immediately seen by comparing CAT with GAT in these models. 
The only thing we can add is that GAT does not change when we go from 
the expansion to the contraction period in the latter model, since this model 
is an oriented manifold, with a GAT that cannot change, and is fixed by the 
BAT, defined by the initial unstable state, which is always in the past of 
every event of the manifold (about the relation of QAT and GAT in this case 
let us observe that a contracting universe produces particles like an expanding 
one). So CAT is not a good candidate for a master arrow of time. In our 
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f .". 

Fig. 16. Figure 15 in the classical case. 

discussion this role is played by BAT and also by GAT, which are much 
easier to relate to the other arrows than CAT. 

So, with the exception of CAT, which is model dependent, all the arrows 
are coordinated. 

8. C O N C L U S I O N  

Even if much work must be done to complete the details, the main lines 
of the landscape are already finished. Time asymmetry can be considered as 
a global symmetry breaking, if we use the Gel ' fand triplet structure, in the 
most convenient and economical way. Let us comment on this statement: 

Global: The arrow of time is clearly global. If  it were a local phenome- 
non, we could construct different arrows of time in different laboratories, 
which obviously is not the case. Nevertheless some local laboratory physicists 
might find this concept difficult to understand. They would ask, e.g., what 
would happen if suddenly a Maxwell demon changed the direction of the 
velocities of every point: would the arrow of time change? This proposition 
has only (a local) sense if the demon changes all the velocities inside the 
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laboratory and leaves the velocities outside the laboratory untouched. Since 
there is a (global) arrow of time external to the laboratory, we have an extra 
arrow of  time to compare with and verify that there is a change on the 
direction of velocities inside the laboratory. Then the answer will be that 
there is no change in the arrow of time, since it is defined by the motion 
exterior to the laboratory. We will only see that things inside the laboratory 
move in an opposite direction. Then, as the arrow of time is global, we may 
ask ourselves what would happen if the demon changes the velocities of all 
the points of the universe? Then we can say that this task (a) is practically 
impossible, and (b) is also theoretically impossible, because if the demon 
changes all the velocities (when we are sleeping) we would not see any 
change (when we wake up), since we will find that all arrows of time pointing 
again in the same common direction (even if different than the previous one) 
and we have no extra arrow of time to compare. So there is no real change 
and we can say that the only thing that the global demon has accomplished 
is to pass from space ~ _  to space alp+, which, being identical, have only a 
conventional difference. 

So the task of the global demon is not only practically impossible, but 
theoretically meaningless. For this reason restricted dynamics theory confines 
the dynamics to space alp_ and forbids space ~+, precisely because the global 
inversion 72 ~ _  --> qb+ is practically impossible and theoretically meaningless 

Gel'fand triplet structure: It is essential to see the generalized spontane- 
ous symmetry breaking. If we remain within the old structures, like classical 
Liouville-Hilbert space, we do not see it. For example, all initial conditions 
belong to this space and have two equilibrium states, one at the far past and 
one at the far future, for mixing evolutions. Thus, these states cannot break 
the time symmetry. 

Convenient: Using the new spaces of the triplet, we can expand the 
states in decaying or growing bases of eigenstates of the Hamiltonian and 
compute their time evolution easily. These eigenstates do not exist in usual 
Hilbert or Liouville-Hilbert spaces. 

Economical: To introduce irreversibility we must add something (e.g., 
coarse-graining) or make some changes. We believe that the minimal change 
is just 50 ---> d~_. 

We hope that all these reasons persuade the reader that we are on the 
fight road. But we are also sure that the polemics will continue. 
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